
© 2010 Pittsburgh Supercomputing Center

Web10G: Stack Metrics for the Rest of Us

JET Meeting

October 21st, 2014

Chris Rapier

rapier@psc.edu

© 2010 Pittsburgh Supercomputing Center

Why Stack Metrics Matter

• All performance problems look the same

– Which complicates diagnosis considerably

• This imparts a significant impediment to workflow

– However, the TCP stack ‘knows’ quite a lot

• It has to in order to respond to events properly

– Getting what the stack knows to the user can

help identify the cause of poor performance

• Sadly, the stack isn’t instrumented. All we really have

is a ‘check engine’ light.

© 2010 Pittsburgh Supercomputing Center

Why Stack Metrics Matter 2

• Poor performance increases costs and

decreases productivity

– Resolution of performance problems takes time

• Often because each problem has to be addressed from

a position of no information

• The interactive cycle with the user can take days if not

weeks to resolve the problem

• Stack metrics can give engineers real time

real world insight.

– This can reduce user downtime and support staff

effort

© 2010 Pittsburgh Supercomputing Center

How To Get The Metrics

• Instrument the stack

• Bring the metrics out of the kernel

• Provide an API

• Build tools

• Simple!

© 2010 Pittsburgh Supercomputing Center

Web10G: Making it Happen

• Instrumentation

– RFC 4898 provides the basis of the KIS

• 127+ different metrics based on known and inferred events in

the TCP stack.

• Duplicate acks, spurious retransmissions, timeouts,

congestion window, sack blocks, congestion events, etc.

– Currently supports Reno, BIC, CUBIC, & HTCP.

– Each connection is maintained in a persistent yet stateless

struct in kernel memory

• Each instrument contains the *current* value and nothing

more. No lifespan data in the kernel.

– Relatively lightweight

• Can support millions of connections

© 2010 Pittsburgh Supercomputing Center

Web10G: Getting to the Data

• Need to move the data out of the kernel

– Normally kernel memory is siloed from userland

• However, there are methods to access some data

– Proc is slow. Netlink (nl) is much faster and very

well supported in the Linux kernel

• Web10g binary interface developed as

DLKM.

– Provides wrappers and entry points into KIS

memory structs via a generic netlink (nl) family

• Other access methods can be built around

nl using the Web10G nl family.

© 2010 Pittsburgh Supercomputing Center

Web10g: Using the Data

• User side API developed to interact with netlink and

process results

– Relatively simple with a small number of calls.
• Example code

Estats_nl_client_init (&client_list);

Estats_val_data_new(&tcp_data);

Estats_read_vars(tcp_data, cid, client_list);

{…do stuff with tcp_data…}

Estats_val_data_free(&tcp_data);

Estats_nl_client_destroy(&client_list);

– Can be incorporated into almost any existing application or

build new tools easily

– User only has access to their own connections

© 2010 Pittsburgh Supercomputing Center

Web10g in Pictures

© 2010 Pittsburgh Supercomputing Center

Why Bother?

• More information

• Better tools

• Deeper insight into usage

© 2010 Pittsburgh Supercomputing Center

The Insight Tool

• Three different types of network users

– Those who know, those who expect too much,

those who expect too little

– Underutilization is a *real* problem

• How do we help those who don’t expect

enough?

– Give them a tool to visualize their flows

– Point out poorly performing flows

• Which is a *hard* problem

– Let them easily report problems to the NOC

– Teach them what to expect

© 2010 Pittsburgh Supercomputing Center

The Insight UI

© 2010 Pittsburgh Supercomputing Center

The Insight client

• Simple websocket server that monitors flows

• Accepts commands in JSON format

– Stacked filters allow for fine tuning of the returned data

• Filter on destination IP/mask, ports, and applications

• Metric mask to limit results to specific data points

• Reports returned in JSON format

• Not tied to a specific UI.

– Can be used as a base for other monitoring projects

• Can return reports directly to a RDBMS

© 2010 Pittsburgh Supercomputing Center

The Insight NOC Tool

• Give NOCs an easy entry point into reported

flow data

• Still barebones at the moment

– Currently can find a view data in a table format

– Hoping to add:

• Reporting

• Advanced search

• Some level of data visualization

– Particularly to show change over life of flow

© 2010 Pittsburgh Supercomputing Center

Insight in Action

• Your patience please while we load the

demo

http://localhost/map.html

© 2010 Pittsburgh Supercomputing Center

Next Steps for Insight

• Insight tool is still too limited for most users

– Dependencies create large barriers to entry

– Cannot monitor 3rd party transfers

– Still requires users to *watch* the flow

• Solution: Install in DMZs to monitor

scheduled transfers

– Provide a UI to the NOC with better alarming

• This would include reporting and analysis to find trends

– Give users access to real time visualization or

post transfer reports in plain language

• Authorization is going to be hard but doable.

© 2010 Pittsburgh Supercomputing Center

Status of Web10g

• Core code is stable and deployable

• Working with teams at Google to prepare for

submission to Linux kernel

• Tool development is on going

• http://www.web10g.org

• http://github.com/rapier1/web10g

• rapier@psc.edu

http://www.web10g.org

